Essential Skills for Living Shorelines

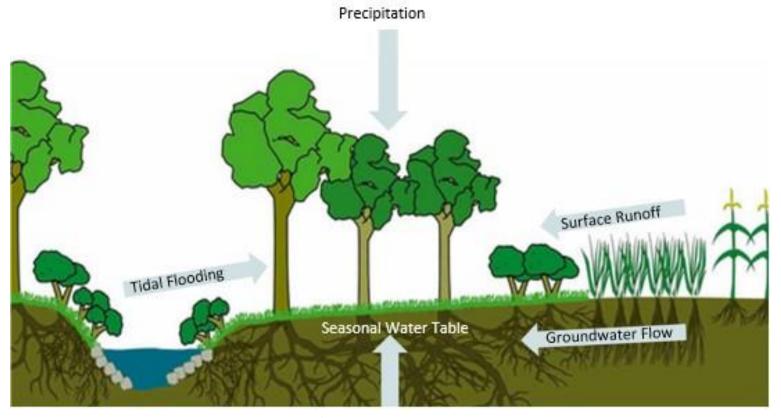
Problem Solving & Importance of Site Evaluation

Karen Duhring

Coastal Scientist

Virginia Institute of Marine Science

Center for Coastal Resources Management



Shoreline - Water Interactions

Erosion happens when moving water overwhelms forces holding soil in place

MOVING WATER

Precipitation

Surface runoff

Surface flooding

Tidal waves & flooding

Groundwater moving through root zone

Elevated water tables near or above ground surface

Natural Feature Benefits

RIPARIAN BUFFERS

TIDAL MARSHES

BEACHES & DUNES

REEFS

Rough surfaces create friction to reduce flow velocity & wave height

Connected root systems hold soil in place & promote water infiltration

Water uptake by plants reduces standing water

Sediment settlement with slower water movement

Nutrient & pollutant uptake by living plants & soil community processing them into less harmful forms

LESS EROSION POTENTIAL

LESS FLOODING

WATER QUALITY IMPROVEMENT

Restoration vs. Living Shorelines

Habitat Restoration

Main Purpose:

Replace lost natural habitat

People are generally absent for habitat quality

Shoreline habitat restoration opportunities regardless of erosion conditions

Living Shorelines for Erosion Protection

Main Purpose:

Solve erosion problems for people using natural features

- Reduce erosion risk
- Human presence normal
- Blend with shoreline activities
 e.g. water access, recreation, boating

Identify Shoreline Problems

Blend property owner concerns with expert observations & opinions

Is flooding or erosion the main problem?

Is erosion happening? If so, where? Can it be tolerated and left alone to let nature take its course?

If there is active erosion, what forces might be causing it?

Can simple behavior adjustments solve erosion problem?
Changing water access points
Less frequent mowing
Horticulture practices

Establish goal(s) for intervention project

Property Owner Concerns other than erosion

Tidal flooding frequency & extent

Safety

Wildlife love or hate

Recreation Access

Boating

Landscape Design Aesthetics formal vs. informal & natural

Sentimental Trees & Shoreline Memories

Water Views

Neighbors' Shorelines & Opinions

Local shoreline norms

Established line of defense across parcels

Develop Shoreline Profile Natural Features

	Riparian Buffer & Bank	High Marsh Dry Beach	Low Marsh Wet Beach	Nearshore
Natural Features &	Forested - undisturbed	Backshore Trees		Submerged Aquatic Vegetation
Plants	Forested – disturbed	High Marsh Perennials	Low Marsh perennials	Shellfish Reefs
	Perennials & Grasses Only	Dune Perennials		Sand Bars
	Turf Grass		Sand & Mud Flats	Tidal Flats
Fewer	Bare Soil	Dry Sand	Wet Sand	Deep Water
Plants	Dev			

Source: VIMS Living Shoreline Design Guidelines 2021

Develop Shoreline Profile Bank Height & Slopes

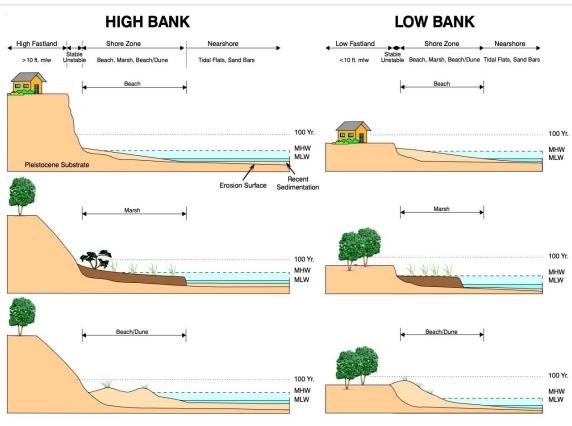
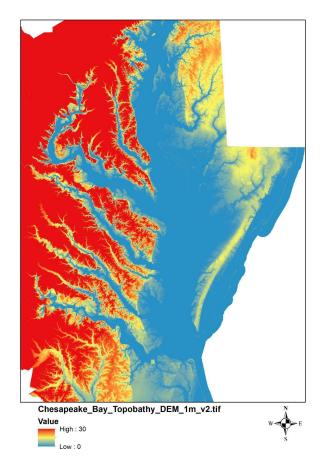



Figure 13

Six typical shoreline profiles around Chesapeake Bay. The stability of the bank face is dependent upon the width and type of shore zone features. Wide beaches/dunes and marsh zones can offer significant wave protection even during storms. (Mean high water (MHW), mean low water (MLW), and 100-year storm surge elevation.)

Source: Shoreline Management in the Chesapeake Bay, Hardaway & Byrne

High steep banks may require different techniques like bank grading or bank stabilization

May not qualify for expedited general permits

Source: Topobathymetry Map provided by D. Milligan, VIMS

Develop Shoreline Profile Human Uses

	Riparian Buffer & Bank	High Marsh Dry Beach	Low Marsh Wet Beach	Nearshore	
Human	Visible & underground infrastructure	Existing defense structures		Docks – Piers – Boathouses	
Uses	Riparian access structures	Recreation (ıses		
	Stormwater management	Water access improvements & uses		Navigation channels	
	Formal landscape			Boat wakes	
	Natural landscape				

Source: VIMS Living Shoreline Design Guidelines 2021

Living Shoreline Suitability

What to Look For

- Active erosion threatens valuable asset(s)
- Upland land use change or stormwater management cannot solve problem
- Willing property owner with goals & realistic expectations
- No significant harm to natural or cultural resources
- Construction access & future maintenance/monitoring access is feasible
- No significant land or water use conflicts
- Local reference habitats available Biological Benchmarks
- Available space for habitat shifts due to sea level rise

Construction Access Feasibility

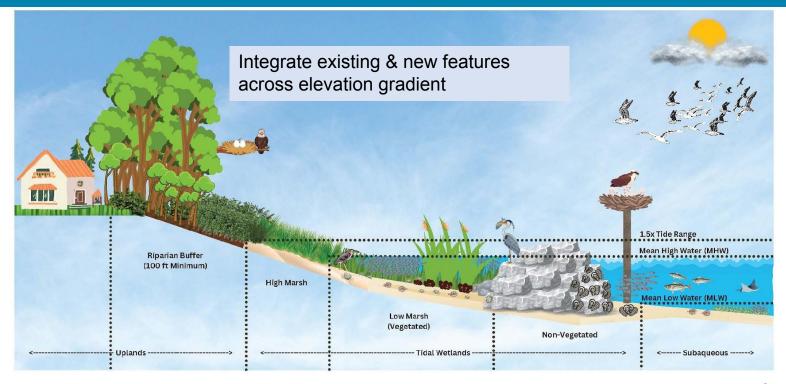
How to transport equipment & materials to shoreline by land or water

Access routes through forest areas, across tidal marshes, valuable turf areas

Material stockpiles & equipment staging

Restoration plans

Labor accommodations


Volunteer access & parking

Living Shoreline Potential Practices

UPLAND

Stormwater management
Conservation landscaping
Bank grading & re-planting

TIDAL WETLAND

Protect existing marsh

Sand fill & beach nourishment

Planted tidal marsh & beach

M. Whalen VIMS

SHALLOW WATER

Stone & oyster sills

Offshore breakwaters

Getting Ready for Monitoring

How to evaluate project performance

REASONS FOR PROJECT-LEVEL MONITORING

Document how projects are built

Comply with permit conditions for monitoring reports

Track performance over time

Identify maintenance needs

Know when adaptive management is needed

Monitoring Plan Considerations

Document Baseline Conditions to compare with future monitoring data

Delineate erosion problem areas

Delineate existing natural features to remain as part of a living shoreline system

Establish normal tide & storm water levels based on observed site conditions

Establish biological benchmarks Elevation ranges occupied by natural features

Biological Benchmarks

Benchmark: A fixed physical object or mark used as a reference point

Biological Benchmark: Reference point is a natural feature

LIVING SHORELINE APPLICATIONS

Determine the elevation range occupied by local plant communities

Establish minimum target elevations for created or restored features

Use higher elevations in each zone to design for sea level rise adaptation & habitat shifts

Biological Benchmarks

Survey multiple elevations along upper and lower limits of plant zones

Low Marsh – High Marsh – Upland Transition

Zones may overlap

Calculate average elevation range for each zone

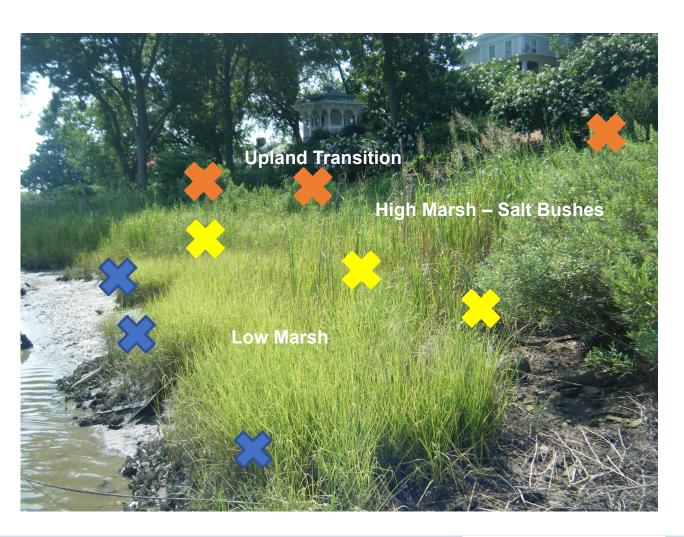

Example

Table 10.4 Example of a Biological Benchmark Determination

Biologica	al benchmark	form						
Site:		Libertyville Wetland Bank						
Date:		17-Aug-05						
Investigator:		W. I. Priest						
Datum:		NAVD 88						
	Lower limit	Upper limit	Lower limit	Upper limit				
	Spartina	Spartina	Phragmites	Phragmites	Juncus		Misc.	
	alterniflora	alterniflora	australis	australis	roemarianus	Saltbush	species	Note
	1.12	2.45	2.45		2.73	3.8	0.65	Creek bottom
	0.93	2.8	2.17		2.48	3.86	1.36	Ditch bottom
	0.8	2.77	2.1		2.83	3.61	2.58	Panne
	0.91	2.65	2.65		3.03	3.59	3.3	Existing grade
	0.82	2.81	2.82	3.43	2.93	3.46		
	1.24	3.04	2.83		2.9		2.81	S.r.
		2.93	2.97		2.7		2.86	S.cyno.
		2.89	3.03				3.04	D.s.
			2.9				3.22	D.s.
Mean	0.97	2.79	2.66		2.80	3.66		
Max	1.24	3.04	3.03		3.03	3.86		
Min	0.80	2.45	2.10		2.48	3.46		
N	6	8	9		7	5		
Ave dev	0.14	0.13	0.28		0.14	0.13		
Std dev	0.17	0.18	0.34		0.18	0.16		

Source: W. Priest III 2017

Monitoring Plan Considerations (continued)

Define how to perform monitoring can it be done?

Confirm monitoring is feasible & safe

Identify who's responsible for monitoring at what stage

Secure future access legally & physically how can access be maintained?

Determine key performance indicators most important things to watch for

Establish fixed photo stations & permanent markers

Monitoring Plan Considerations (continued)

Maintenance Triggers what to include with maintenance plan?

How much plant succession is acceptable – when is suppression needed

Grazing exclusion materials & other wildlife management

How to remove trash & large woody debris

Invasive plant control anticipation

Tree and shrub trimming or removal

Sea level rise adaptation (add sand or raise structures)

Site Evaluation Tools

Where to look for help & guidance

VIMS Center for Coastal Resources Management

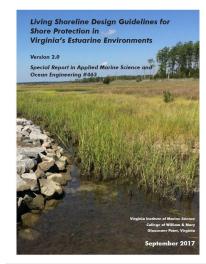
Living Shorelines Web Site

Living Shorelines Story Maps

AdaptVA Interactive Map

<u>Shoreline Decision Support Tool</u>

Coastal Living Guides


VIMS Shoreline Studies Program

Living Shorelines Design Guidelines 2021

<u>Living Shoreline Sea-Level Resiliency</u> *reports*

<u>Site Assessment Tools & Worksheet</u>

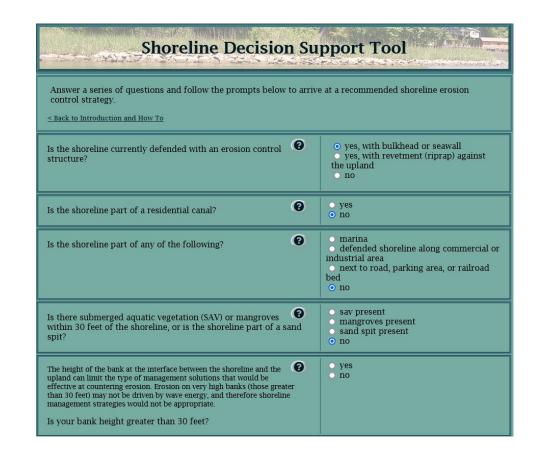
Shoreline Change Online Viewer 1937-2017

Site Evaluation Tools

Where to look for help & guidance

VIMS Shoreline Decision Support Tool

Trusted scientific foundation


Combines GIS suitability model + site observations

Re-sizes for different screens

Interactive Help built in

Final Recommendations may or may not make sense

Process of asking questions should be helpful regardless

Site Evaluation Tools

Where to look for help & guidance

Free Expert Advice

<u>DCR-Shoreline Erosion Advisory Service</u> site visits, plan reviews, construction inspections

VA Institute of Marine Science

VA Marine Resources Commission Habitat Management Division

Locality Staff environmental programs & Wetlands Board staff

Living Shoreline Professionals Network

Living Shoreline Collaborative

Chesapeake Bay Landscape Professionals

Shoreline Business Partners

Contact Information

Karen Duhring

Virginia Institute of Marine Science karend@vims.edu

