The Site, Desktop Exercise, Prep for Tomorrow

Common Knowledge of Living Shoreline Implementation Best Practices & Resources

Site Feasibility & Evaluation

Design

Permitting

Construction

Maintenance Monitoring Management

Meet Client & ID Problem

Site Assessment

Consult Technical Advisors & Regulators

Consider Solutions

Select Solution

Conceptual Designs

Consult Client, Contractor Consult Regulators, TAs

ID Impacts & Permits Required

Develop final drawings for Permit Application

Complete & Submit JPA
Part 5 CBPA Info

Site Visits & Meetings w/ Regulators & Boards

Address Comments & Conditions for Approval

Pre-Construction
Feasibility, Site Visits,
Consults, Permits

Site Prep, Protection Materials

Construction & Inspections

Establishment

Typical Regular Tasks

Management

Monitoring & Verification

Day 2 Overview

- Introductions, Plan for the Day
- Homework Review & Prep for Field Assessments
- 15 minute break and move outside
- Field Assessment Stations in small groups
- Advisory Panel Discussion
- 30 minute lunch break
- Design Options
- Contractor Panel Implementation Best Practices
- Construction Feasibility
- Breakout Groups Living Shoreline Solution Feasibility
- Plan for tomorrow & Social

Today's Instructors/Speakers

- Karen Duhring, VIMS
- Aaron Wendt, DCR SEAS
- Rachael Peabody, VMRC
- Mary Mantey, ERP
- Ellen Grimes, CRM
- Jim Cahoon, Bay Environmental
- Ryan Walsh, JRA
- Tracy Skrabal

CBLP Staff

- Beth Ginter
- Shereen Hughes
- Stacie McGraw
- Jason Swope

Pre-Class Work for Day 2

HOME

GET CERTIFIED

CBLP DIRECTORY

LOG IN

CBLP-Shorelines Workshop Materials

Key References

VIMS Living Shoreline Design Guidance

VIMS Online Shoreline Management Handbook

VMRC Wetlands Guidance & Wetlands Regulations

Worksheets & Handouts

Desktop Analysis Form

Desktop Analysis Instruction Guide

Site Assessment Terms

Videos

Intro to CBLP

Why Living Shorelines

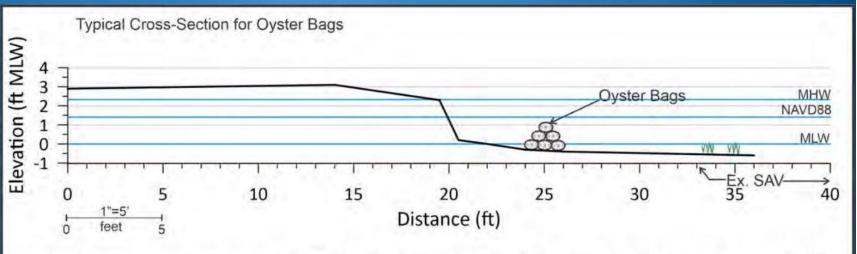
Living Shorelines 101

- Review & be familiar with VMRC Group 1 and Group 2 General Permits
- Using the Desktop Analysis Guide, complete the Desktop Analysis Form for the area outlined in red on the Base Map. Bring a printed copy of the form to class.

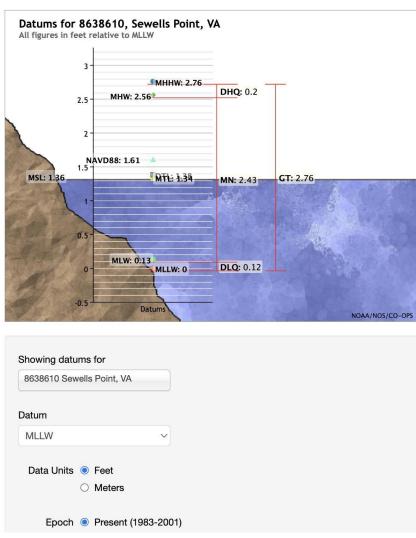
Maintenance Plan Template

Pre-Class Work for Day 2

Shore orientation NE NW E W S SE SW Shore Length: ft Shore Width: Very High (> 15 miles) High (5-15 miles) Medium (1-5 miles) Low (0.5 - 1 mile) Very Low (< 0.5 miles) Average Fetch: mi Direction: Shore Morphology: Pocket Headland Longest Fetch: Straight Irregular Depth Offshore: ft Nearshore Morphology: Bars Tidal Flats Other: 1.5x Mean Tide Range: MLW: MHW: MTL: Mean Tide Range: Tide Data (calculate using MTR) **DESKTOP ANALYSIS** Average 10 yr 100 yr PSU Storm Surge: 50 yr Salinity: Expected SLR: 10 yr 20 yr 50 yr Saltwater Freshwater Very high accretion (> +10 ft/yr) Very High Erosion (> -10 ft/yr) High accretion (+10 to +5 ft/yr) High Erosion (-5 to -10 ft/yr) Is Submerged Medium accretion (+5 to +2 ft/yr) Medium Erosion (-2 to -5 ft/yr) Aquatic Low Erosion (-1 to -2 ft/yr) Low Accretion (+2 to +1 ft/yr) Vegetation Erosion Rate: YES Very Low Accretion (+1 to 0 ft/yr) Very Low Erosion (0 to -1 ft/yr) (SAV) present? NO Design Wave: Height Period Proximity to Navigation Channel: Note easements or utilities located in the project area: Notes:



Choose your datum, be consistent


- 1) VIMS Mean Low Water (MLW)
- 2) CORPs Mean Low Low Water (MLLW)
- 3) Land Topography NAVD88

If you collect your survey data in NAVD88, at this site at the mouth of the York River, the conversion between NAVD88 and MLW from our Google Earth app is in the 1.4-1.6 ft range. Because our location is nearer to the 1.2-1.4 range, we used 1.4 ft as our conversion. That means that NAVD88 is 1.4 ft above MLW at this site. To convert survey data to MLW, add 1.4 ft to all of your survey elevations.

Example: a point that is 2 ft above NAVD88 (+2 ft NAVD88) will be at +3.4 ft MLW. a point that is 2 ft below NAVD88 (-2 ft NAVD88) will be at -0.6 ft MLW

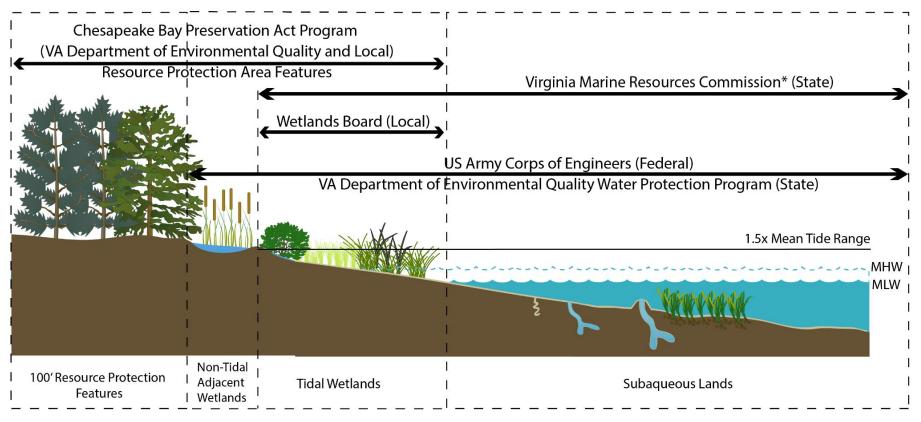
Conversion elevations differ by location so it is important to check the conversion app for each site.

Sources: VIMS Living Shoreline Design Site Assessment Tools Training & NOAA https://tidesandcurrents.noaa.gov/datums

Desktop Analysis - Datum NAVD88

rsis	Shore orientation(s):	N	NE	NW	E	W	S•	SE	SW∙	Shore Length:	~ 300 ft	Shore Width:	~ 15 ft	
	Average Fetch:	Very High (> 15 miles) High					h (5-1	-15 miles) Medium (1-5 miles) Low (0.5 - 1 mile) Very Low (< 0.5 miles)●						
	Longest Fetch:	0.42 mi	Direction	:	ENE		SI	hore Mo	rphology:	Pocket	Straight	Headland	Irregular	Under Bridge
	Depth Offshore:	2 ft Nearshore Morphology:					Bars	Tidal Flats	Other:					
	Tide Data	MLW: -1.678	MHW: 0.	752	MTL:	L: -0.468		ean Tide	e Range:	2.5 ft	1.5x Mean Tide	Range: (calcul	1.942 ft	NAVD88
	Storm Surge:	10 yr: 5.1 ft			50 yr: 6.5 ft		100 yr: 7.1 ft		Average Salinity:	21 PSU	NAVD88			
ANALYSIS	Expected SLR:	10 yr: 1.19 ft (2033) 20 yr: 1.77			1.77 ft	(2043	043) 50 yr: 4 ft (2073)			Saltwater	Freshwater	NAVD88		
DESKTOP /	Erosion Rate:	<pre>Wery high accretion (> +10 ft/yr) High accretion (+10 to +5 ft/yr) Medium accretion (+5 to +2 ft/yr) Low Accretion (+2 to +1 ft/yr) Very Low Accretion (+1 to 0 ft/yr)</pre>					High Erosion (-5 to -10 ft/yr) Ac Medium Erosion (-2 to -5 ft/yr) Ve Low Erosion (-1 to -2 ft/yr) (S		Is Submerged Aquatic Vegetation (SAV) present?	YES	NO			
	Design Wave:	Height	N/A		Period	d d	N/	/A		Proximity to Naviga	ation Channel:	~ 5000 ft		
	Note easements or utilities located in the project area:													
	Notes:													
		elevations in	NAV88 b	ased o	n NOA	A online	e verti	cal datui	m transformation	from MLLW (0.0) to	NAVD88 (-1.808	3 ft)		

Desktop Analysis - Datum MLW


Shore orientation	ion(s):	N NE NW	/ E W S●	SE SW∙	Shore Length:	~ 300 f	Shore Width:	~ 15 ft	
Average Fetch	:	Very High (> 15	miles) High (5-	15 miles) Medium (1-	miles) Medium (1-5 miles) Low (0.5 - 1 mile) Very Low (< 0.5 miles)●				
Longest Fetch:	: 0.37 n	ni Direction:	sw	Shore Morphology:	Pocket	Straight	Headland	Irregular	
Depth Offshore	e: 2	ft Nearshore Mo	rphology:	Bars	Tidal Flats	Other:			
Tide Data	MLW: 0.13	MHW: 2.56	MTL: 1.34	Mean Tide Range:	2.5 ft	1.5x Mean Tide	e Range: <i>(calcula</i> 3.75 ft		
Storm Surge:	10 yr: 5.1 ft (6	.78 ft)	50 yr: 6.5 ft (8.	50 yr: 6.5 ft (8.18 ft)		78 ft) Average Salinity:		21 PSU	NAVD88 (MLW Datum
Expected SLR:	: 10 yr: 1.19 ft (2033)	20 yr: 1.77 ft (20 yr: 1.77 ft (2043)		50 yr: 4 ft (2073)		Freshwater	NAVD88
Erosion Rate:	High acci Medium a Low Acci	retion (> +1 retion (+10 to +5 accretion (+5 to - retion (+2 to +1 for Accretion (+1 to	ft/yr) +2 ft/yr) t/yr)	High Erosion (-5 to -10 /r) Medium Erosion (-2 to Low Erosion (-1 to -2		Is Submerged Aquatic Vegetation (SAV) present?	YES	NO	
Design Wave:	Height	N/A	Period	N/A	Proximity to Navig	gation Channel:	~ 5000 ft		
Note easement	Note easements or utilities located in the project area:								
Notes:									

Measurement	MLLW Datum (0.0 ft)	NAVD88 Datum (0.0 ft)
Depth Offshore 2 ft		
Mean Low Water (MLW)	0.13	-1.68
Mean High Water (MHW)	2.56	0.75
Mean Tide Level (MTL)	1.34	-0.47
Mean Tide Range (MTR)	2.50	2.50
1.5x MTR	3.75	1.94
Storm Surge 10 yr	3.62	5.10
Storm Surge 50 yr	5.02	6.50
Storm Surge 100 yr	5.62	7.10
Sea Level Rise 10 yr	-0.29	1.19
Sea Level Rise 20 yr	0.29	1.77
Sea Level Rise 50 yr	2.52	4.00
Proximity to Navigation Channel 5000 ft		

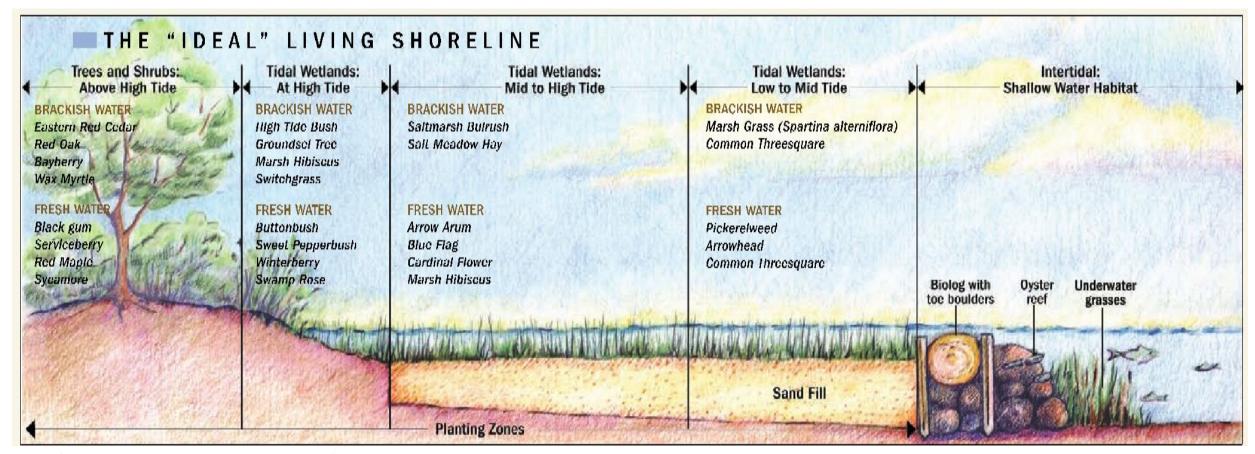
Virginia Jurisdictional Boundaries Tidal Waters

VMRC – Below MI W

- Subaqueous
- (Group 2) 30' or less channelward encroachment from MLW

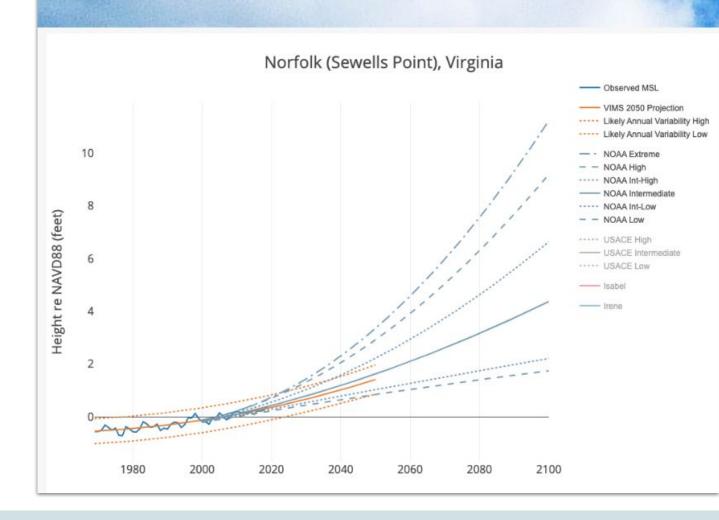
Wetland Board above MLW to 1.5x Mean Tide Range

USACE - All


CBPA

- MLW + 100 ft Buffer
- 100 ft buffer from wetlands edge inland

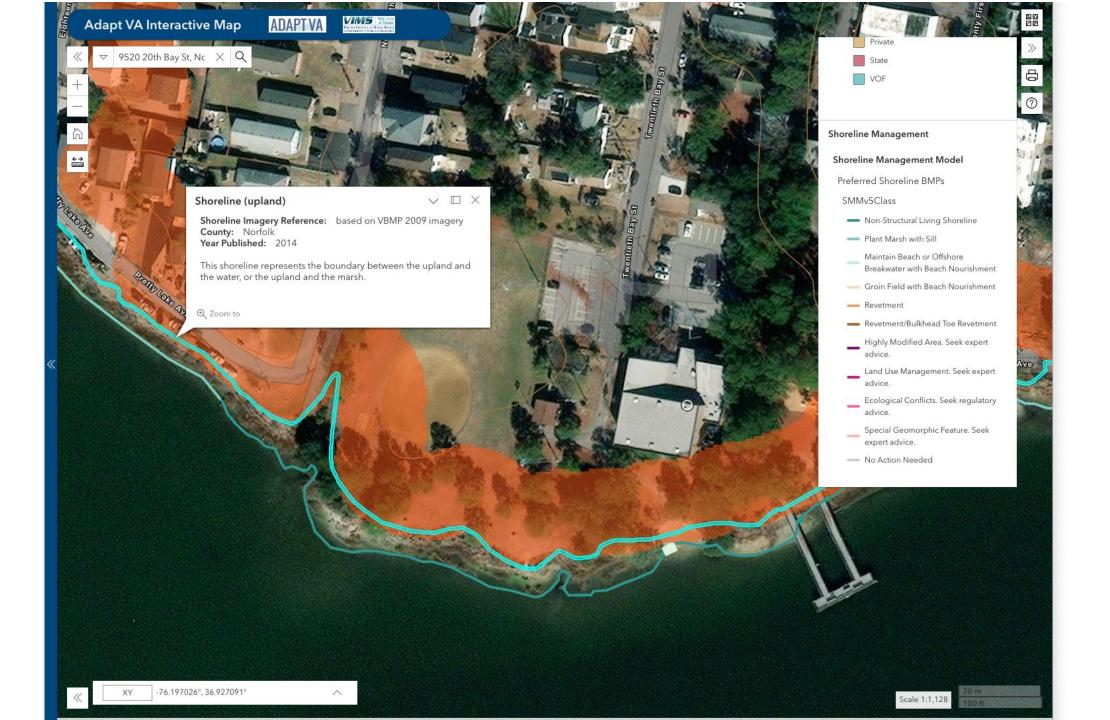
Living Shoreline Natural Communities - Elevations & Biological Benchmarks



Predicted Sea Level Rise

Virginia Sea Level

Evidence-based planning for changing clima


City of Norfolk

Esri, HERE, Garmin, (c) OpenStreetMap contributors, and the GIS user community, Source: Esri, Maxar, Earthstar Geographics, and the GIS User Community, City of Norfolk GIS Bureau

Identify Shoreline Problems

Blend property owner concerns with expert observations & opinions

Is flooding or erosion the main problem?

Is erosion happening? If so, where? Can it be tolerated and left alone to let nature take its course?

If there is active erosion, what forces might be causing it?

Can simple behavior adjustments solve erosion problem?
Changing water access points
Less frequent mowing
Horticulture practices

Establish goal(s) for intervention project

Collect Site Specific Information to Inform Design, Permit Application, Cost Estimates, Monitoring

See Section 4 on the JPA for the full list of permitting requirements

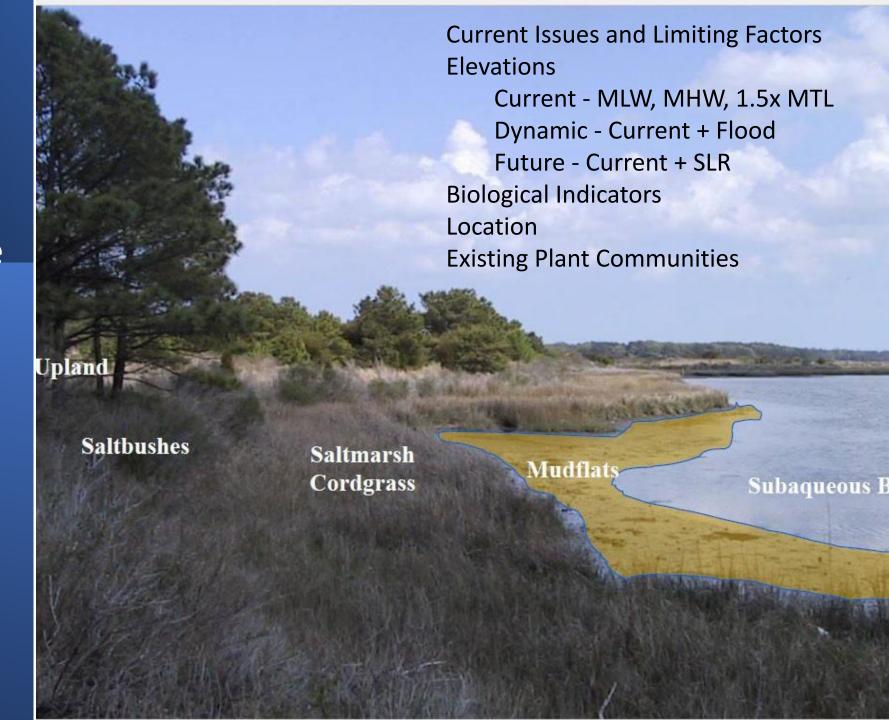
- Linear feet of project
- Width of project
- Total Wetland Conversion
- Height of scarp
- Material for toe or sill
- Material quantities
- Relative fetch
- Coordinates and Address

- Tidal info (MLW, MHW, and direction of EBB and Flood)
- Name of body of water
- Property Boundaries
- Length of sill (if needed)
- Area of sand fill
- Distance to a landmark (benchmark)
- North arrow

Develop Shoreline Profile Natural Features

	Riparian Buffer & Bank	High Marsh Dry Beach	Low Marsh Wet Beach	Nearshore
Natural Features &	Forested - undisturbed	Backshore Trees		Submerged Aquatic Vegetation
Plants	Forested – disturbed	High Marsh Perennials	Low Marsh perennials	Shellfish Reefs
	Perennials & Grasses Only	Dune Perennials		Sand Bars
	Turf Grass		Sand & Mud Flats	Tidal Flats
Fewer	Bare Soil	Dry Sand	Wet Sand	Deep Water
Plants	Dev			

Source: VIMS Living Shoreline Design Guidelines 2017


VMRC – Below MLW Subaqueous

Wetland Board above MLW - high marsh

USACE - All

CBPA - High Marsh + 100 ft Buffer

Slides by Mary Mantey, ERP

Shore Zone Width and Elevation

Existing tidal wetland

- Non-vegetated
- Salt or freshwater marsh
- Cypress trees

Existing sand beach

Intertidal beach

Combination

Patchy marsh headlands with pocket beaches

-Measure width of each feature in profile on previous page

-Identify plant species, jurisdictional limits

-Do existing beach and marsh contribute to erosion protection?

-Can they be temporarily disturbed or enhanced?

Key Reference Source: Determining Site Specific Parameters for Living Shoreline Design 2022 VIMS Presentation

Backshore Width and Elevation

Existing high marsh

- Saltmeadow hay
- Phragmites
- Salt bushes

Existing supratidal beach > MHW

- Overwash sand
- Primary & secondary dune features

Backshore terrace

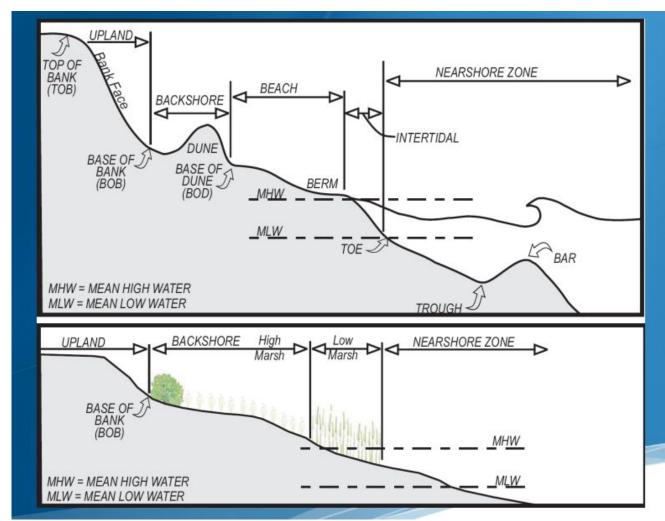
- Bank slumping
- Upland grasses and trees

Measure width of each feature in profile

Identify plant species, jurisdictional limits

Do existing features contribute to erosion protection?

Can they be temporarily disturbed or enhanced?

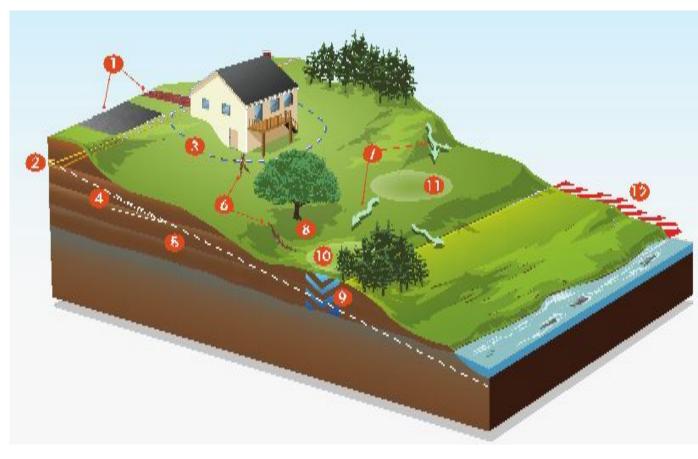

Key Reference Source: Determining Site Specific Parameters for Living Shoreline Design 2022 VIMS Presentation

Combined Shore and Backshore Zone Width and Elevation

Key Reference Source:
Determining Site Specific
Parameters for Living
Shoreline Design 2022
VIMS Presentation

Develop Shoreline Profile Human Uses

	Riparian Buffer & Bank	High Marsh Dry Beach	Low Marsh Wet Beach	Nearshore
Human	Visible & underground infrastructure	Existing defense	Docks – Piers – Boathouses	
Uses	Riparian access structures	Recreation (Navigation channels	
	Stormwater management	Water access improve		
	Formal landscape			Boat wakes
	Natural landscape			


Source: VIMS Living Shoreline Design Guidelines 2017

Whole Site Evaluation

Source: Anne Arundel County Watershed Stewards Academy Rainscapes Manual Appendix A

- 1) Location and Orientation of Impervious Surfaces
- 2) Utilities and Easements
- 3) Proximity to Structures
- 4) Slope
- 5) Soil Type
- 6) Erosion Problem Areas
- 7) Flow Paths
- 8) Location and Health of Existing Trees/Canopy & Vegetation
- 9) Depth to Groundwater (and seeps)
- 10) Sun and Shade Conditions
- 11) Available Space
- 12) Proximity to sensitive environmental areas

Monitoring Plan Considerations

Document Baseline Conditions to compare with future monitoring data

Delineate erosion problem areas

Delineate existing natural features to remain as part of a living shoreline system

Establish normal tide & storm water levels based on observed site conditions

Establish biological benchmarks Elevation ranges occupied by natural features

Site Assessment Stations

Participants will work in small groups on guided Site Assessments

- Fill in the Site Assessment Forms
- Make Notes on Maps

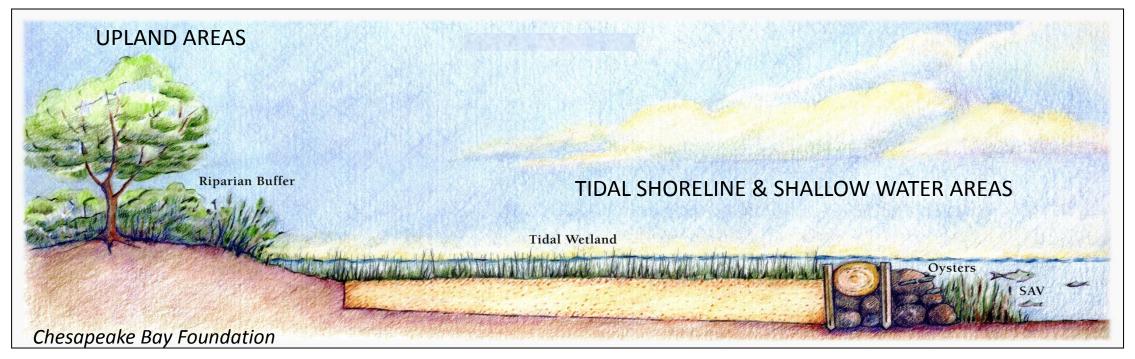
Shore Zone (Jim Cahoon/Mary Mantey) - Group 1
Buffer/Backshore & Biological Benchmarks (Karen Duhring/Aaron Wendt) - Group 2
Whole Property/Upland (Shereen/Stacie) - Group 3
Site Access/Utilities/Fixed Benchmarks (Tracy Skrabal/Ellen Grimes) - Group 4

Any Questions?

Small Group Discussions

- How does site assessment data inform design?
- What level of protection is needed to meet goals?
- Which type of living shoreline is feasible for this site?
 What conditions might impact that feasibility?

Decide on the type of sill for Project Structural or Non-Structural Inform Design, Construction Feasibility, Permit Application



Slides by Mary Mantey, ERP

Living Shoreline Potential Practices

Stormwater management
Riparian buffer enhancement
Bank grading & re-planting
Conservation landscaping

Sand fill & beach nourishment Tidal marsh & beach planting

Coir logs

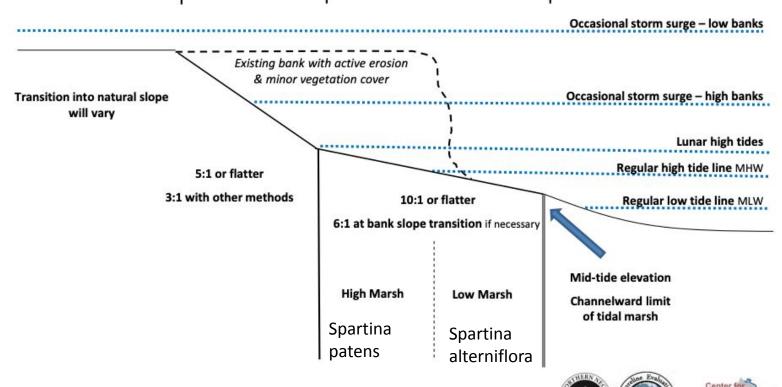
Stone sills

Oyster reef structures

Offshore breakwaters

Bank Grading and Planting Zones

3. Upland Bank

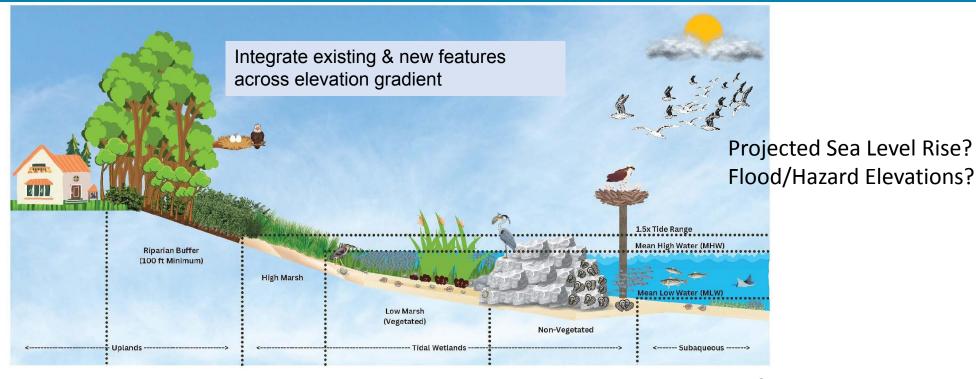

Only occasionally or never flooded during extreme storm tides

2. Bank Slope

Partially flooded during extreme high tides & storms

1. Intertidal Zone

Regularly flooded during high tides



Not to scale - for graphic illustration only

Living Shoreline Potential Practices + Future Conditions

UPLAND

Stormwater management
Conservation landscaping
Bank grading & re-planting

TIDAL WETLAND

Protect existing marsh

Sand fill & beach nourishment

Planted tidal marsh & beach

M. Whalen VIMS

SHALLOW WATER

Stone & oyster sills

Offshore breakwaters

Pre-Class Work for Day 3

HOME

GET CERTIFIED

CBLP DIRECTORY

LOG IN

CBLP-Shorelines Workshop Materials

Key References

VIMS Living Shoreline Design Guidance

VIMS Online Shoreline Management Handbook

VMRC Wetlands Guidance & Wetlands Regulations

Worksheets & Handouts

Desktop Analysis Form

Desktop Analysis Instruction Guide

Site Assessment Terms

Prior to Day 3

- Watch the following videos:
 - Designing for Sea Level Rise
 - Planting Considerations for Living Shorelines
- Review Common Maintenance Tasks

Day 2

Living Shoreline Design Options

Design & Construction Feasibility

Videos

Intro to CBLP

Why Living Shorelines

Living Shorelines 101

Regulatory Context of Shorelines

Designing for Sea Level Rise

Planting Considerations for Living Shorelines

Common Knowledge of Living Shoreline Implementation Best Practices & Resources

Site Feasibility & Evaluation

Design

Permitting

Construction

Maintenance Monitoring Management

Meet Client & ID Problem

Site Assessment

Consult Technical
Advisors & Regulators

Consider Solutions

Select Solution

Conceptual Designs

Consult Client, Contractor Consult Regulators, TAs

ID Impacts & Permits Required

Develop final drawings for Permit Application

Complete & Submit JPA
Part 5 CBPA Info

Site Visits & Meetings w/ Regulators & Boards

Address Comments & Conditions for Approval

Pre-Construction
Feasibility, Site Visits,
Consults, Permits

Site Prep, Protection, Materials, Planting

Construction & Inspections

Establishment

Typical Regular Tasks

Management

Monitoring & Verification

Day 3 Overview

- Begin Outside Check in at 9:45
- Plan for the Day
- Materials and Survey Tools Demo
- 10 minute bathroom break (if available)
- Demo Stations in small groups (Plants, Tools, Maintenance/Monitoring
- 30 minute lunch break
- Best Practices for Permit Drawings
- Concept Drawing Activity
- Practical Monitoring Protocol and Plan
- Develop Maintenance/Monitoring Plans in Small Groups
- Introduce Assignment Prepare Drawings/Design/JPA

Instructors/Speakers

- Karen Duhring, VIMS
- Aaron Wendt, DCR SEAS
- Mary Mantey, ERP
- Jim Cahoon, Bay Environmental
- Ryan Walsh, JRA
- Tracy Skrabal

CBLP Staff

- Beth Ginter
- Shereen Hughes
- Stacie McGraw
- Jason Swope

Thank you!

